Comparison of Temporal and Standard Independent Component Analysis ( ICA ) Algorithms for EEG Analysis

نویسندگان

  • S. J. Nasuto
  • Nicoletta Nicolaou
  • Slawomir J. Nasuto
چکیده

Growing interest in Electroencephalogram (EEG) classification brings a need for the development of appropriate analysis and processing techniques. One of the most significant issues associated with EEG analysis is the high contamination of the recorded signals with various artefacts, both from the subject and from equipment interference. This paper discusses the advantages of using temporal Independent Component Analysis (ICA) over standard ICA for artefact removal from EEG signals. The performance of three ICA algorithms, standard ICA (FastICA) and two extensions including temporal information (Temporal FastICA and TDSEP), has been compared using both artificial and physiological data. It has been found that, in both cases, the temporal algorithm TDSEP displays a significant improvement in performance over the remaining two algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Complex independent component analysis of frequency-domain electroencephalographic data

Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a...

متن کامل

Comparison of Independent Component Analysis Algorithms for Removal of Ocular Artifacts from Electroencephalogram

The electroencephalogram (EEG) is useful for clinical diagnosis and in biomedical research. EEG recordings are distorted by electrooculogram (EOG) artifacts causing serious problem for EEG interpretation and analysis. An often preferable method is to apply Independent Component Analysis (ICA) to multichannel EEG recordings and remove a wide variety of artifacts from EEG recordings by eliminatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003